Relativistic Pair Plasma Production Near Black Holes and in the Laboratory

Edison Liang Rice University

LLNL collaborators: S.Wilks, M. Tabak, B. Remington, B. Langdon...

Talk presented at the NIF Science Meeting Livermore, CA August 2007

Content of Talk

- 1. Astrophysical Data on Black Holes
- 2. Thermal Pair Equilibrium Plasmas
- 3. Pair Plasma around Cygnus X-1
- 4. Manifestation of Pairs from Black Holes
- 5. Pair Production by Ultra-intense Lasers
- 6. Parameter Space of Laser Pair Plasmas
- 7. Ideas for Future Experiments

relativistic e+e- plasmas are ubiquitous in the universe

Thermal MeV pairs

Nonthermal TeV pairs

Most black holes emit γ-rays > 511 keV, capable of producing e+e- pairs

Annihilation-like features have been reported from several Black Hole Candidates (BHC), but have not been confirmed

The Cygnus X-1 "MeV-flares" may be related to Pair Annihilation. This has been confirmed by several experiments

The "MeV-bump" of Cygnus X-1 appears as transient flares when the hard x-ray flux is lower and power-law like

TABLE 1
Presidal Processes in Relativistic Plasmas

Basis Two Body Intersetion	Raciativa Variant	Pair Procluding Variant
Myllic and Bhoho scattering en 7 es	Bromsetral Jung	correco's
Compton scattering ye + γe	Double Compton scattering ye ↔ yeş	$y_0 \leftrightarrow y_0^{-1} e$
Pair atminidation e ' c → 7,4	These quantum annihilation $e^+e^-\to e^+e^-$	
Protest-photes: pair production $r_i \rightarrow e^+e^-$	Radiative pair production	
	Processes Invalving Protons	
Conlamb scattering ep + cp	Bransstrohludg ep ← epş	$cp \leftarrow cpe^+e^-$ $76 \leftrightarrow 5e^+e^-$

Observations of Cyg X-1 motivated a large body of work on thermal "Pair Equilibrium" plasmas in which creation rate=annihilation rate

Thermal Pair Equilibrium plasmas have very peculiar luminosity-temperature diagram

A "gamma-bump" is a tell-tale signature of pair equilibrium plasmas

The CygX-1 MeV-bump can be self-consistently modeled with emissions from a pair-balanced ultra-hot thermal plasma

2D model of a pair-cloud surrounded by a thin accretion disk to explain the MeV-bump

III. LOUSSION REGION PARAMETERS

The compactness parameter and Thomson depth of the paindominated cloud are uniquely determined by its temperature. For a baseling temperature of 400 keV we find

$$1 = L\sigma_0/Rmc^3 \approx 12;$$
 $\tau_T = R\sigma_T(n_- + n_-) \approx 2$ (1)

(cf. Svensyon 1984; Zdziarski 1984), where L is total gamma-ray luminosity. R is cloud radius, $n_{\rm T}$ is electron density, and $n_{\rm T}$ is the Thomson cross section. Using the measured luminosity of $1.1\times10^{3.7}$ ergs s⁻¹ above 400 keV (Ling et al. 1987 but subtracting off the 1.5 MeV channel excess: cf. § 1V), we thus obtain:

$$R = 2.5 \times 10^7 \text{ cm}; \quad R_{-} = 6 \times 10^{16} \text{ cm}^{-3}.$$
 (2)

For a black hole of mass $\sim 10~M_{\odot}$, the pair cloud radius corresponds to $\sim 17~GM/c^3$. Under the ordinary disk accretion scenario, the ratio of the rotal luminosity generated outside of a radius $r_* = rc^2/GM$ to that inside r_* is given by (cf. Shakuca and Sunyaev 1973; Novikov and Thorne 1973; Liang and

These parameters are consistent with a pair-dominated plasma sufficiently collisional to be "thermal".

But where are the annihilation lines from the escaped pairs? To date no narrow 511 keV has been observed from any black holes

Integral γ-ray Observatory is still operational

But it has not detect any narrow 511 keV lines from black holes

Escaping pairs may be accelerated by radiation pressure to form a relativistic pair outflow seen in microquasars

Annihilation line from such pair jets may be too diffuse to be detectable

Outflow Lorentz factor increases with disk luminosity. Observed Lorentz factors (~2--3) are consistent with observed luminosities

Ultra-Intense lasers can produce e+e- jets

Can we generate a relativistic pair plasma in the lab?

 T_{hot} =[(1+I λ^2 /1.4.10¹⁸)^{1/2}-1]mc² T_{hot} > mc² when I λ^2 >10¹⁸ Wcm⁻²

Wilks et al., Phys. Plasmas 8, 542 (2001), Liang and Wilks, PRL

Sample Laser Numbers

$$1 \text{ PW} = 1 \text{ kJ} / 1 \text{ ps}$$

1 PW /
$$(30 \mu m)^2 = 10^{20} \text{ W/cm}^2$$

 $10^{20} \text{ W/cm}^2/\text{c} \sim 3.10^{16} \text{ erg/cm}^3 \sim 2.10^{22} \text{ e+e-/cm}^3$

Solid Au ion density $\sim 6.10^{22} / \text{cm}^3$

$$n_{+}/n_{e} \sim 4.10^{-3}$$

$$B_{\text{equipartition}} \sim 9.10^8 \text{ G}$$

PAIR PRODUCTION BY SUPERTHERMALS ON HIGH-Z TARGET:

$$dN+/dt = (dN+/dt)_{eion} + (dN+/dt)_{\gamma ion} + (dN+/dt)_{\gamma \gamma}$$

$$1 > 2$$
3

for thin ($<< 20 \mu m$) laser targets. Hence

$$dN+/dt = (N++N-) < N_{ion} (f(\gamma) \vee \sigma_{eion}) >$$

 $f(\gamma)$ is normalized superthermal distribution function and

$$\sigma_{\text{eion}} \sim 1.4 \text{ x } 10^{-30} \text{ cm}^2 \text{ Z}^2 (\ln \gamma)^3$$
 for $\gamma >> 1$

is trident pair production cross section (e+ion \rightarrow e+ion+ $\gamma\gamma$): Solving above equation:

N+ =
$$Z N_{ion} \{ exp(\Gamma t) - 1 \} / 2 \sim Z N_{ion} \Gamma t / 2$$
 for $\Gamma t << 1$
N+/N_e ~ $\Gamma t / 2 \sim 2 \times 10^{-3}$ for $t \sim 10$ ps, $I = 10^{20}$ Wcm⁻²

For Au:
$$N+ \sim 10^{22} \text{ cm}^{-3}$$

Nakashima & Takabe 2002

B-H pair-production has larger cross-section than trident, but it depends on photon flux and optical depth of the high-Z target

Nakashima & Takabe 2002

LLNL PW laser experiments confirm copious e+e-production

Nakashima & Takabe 2002

Trident dominates at early times and thin targets, but B-H dominates at late times and thick targets

Wilks & Liang 2002

Nakashima & Takabe 2002

10¹⁶

10¹⁷

n (particles/cm³)

10¹⁸

10²⁰

10¹⁹

10²¹

1022

10¹³

10¹²

1011

1014

10¹⁵

Two-Sided Illumination may create a pair fireball

After lasers are turned off, e+e- plasmas expands relativistically, leaving the e-ion plasma behind (Wilks and Liang 2003)

Advantages of NIF short pulse capability

- 1. High intensity (>10²² W.cm²) to reach the BKZS cutoff temperature.
- 2. Large total energy to produce large number of pairs and high pair denity.
- 3. Multiple beams can provide "inertial confinement" of pairs produced so they have the chance to reach pair equilibrium.

KEY ELEMENTS FOR FUTURE ADVANCES

